

Development and Evaluation of a 3 nm Ultrapure Liquid Quality Monitor

Derek Oberreit^{*}, Steve Kosier^{*}, Siqin He^{*}, Jihyeon Lee^{*#} ^{*}Kanomax FMT, Inc.

[#]University of Minnesota, Twin Cities

- Native Particles and Particle Precursors
 - Importance for IRDS Yield Enhancement 2020 Roadmap
- STPC3 Principle of Operation
 - Nebulization and size-selective condensation counting at 3, 9, and 15 nm
 - Measurement of both Native Particles and Particle Precursors
- Measured Response for Important Challenges and Liquids
 - UPW
 - Side-by-side instrument matching
 - Native Particles
 - SEMI C79 Silica Challenge
 - Particle Precursors
 - KCl challenge
 - High Molecular Weight Organics (HMWO) PSS challenge
 - Isopropyl Alcohol
- Conclusion and Future Work

IRDS 2020 Yield Enhancement Roadmap Highlights

3 nm critical particle size

- Particle
 Precursors are
 important
- Some Important Chemicals
 - IPA
 - H2O2
 - HCl

Year of Production	2020	2021	2022	2023	2024	2025	2026	2027
Logic industry "Node Range" Labeling (nm)	"5"	"5"	"3"	"3"	"3"	"2.1"	"2.1"	"2.1"
IDM-Foundry node labeling	i7-f5	i7-f5	i3-f2.1	i3-f2.1	i3-f2.1	i2.1-f1.5	i2.1-f1.5	i2.1-f1.5
Logic device structure options	FinFet	FinFet	finFET LGAA	finFET LGAA	finFET LGAA	LGAA	LGAA	LGAA
Logic device mainstream device	FinFet	FinFet	finFET	finFET	finFET	LGAA	LGAA	LGAA
MPU/SoC Metalx ½ Pitch (nm)[1,2]	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Critical particle size non-electrically active (non-EAP) (nm) based on 50% of Logic 1/2 Pitch (nm (contacted) [1]	6	6	6	6	6	6	6	6
Critical particle size (nm) of Electrically Active particles based on 50% width of fin Logic SiGe Front End or other device critical dimensions for LGAA	3.5	3.5	3	3	3	3	3	3
Critical size (EUV mask), nm	12	12	12	12	12	12	12	12
Number of non-EAP at critical size (#/L) [26], POE	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
PROACTIVE: Non-EAP Particle Control: 50nm (#/L), Feed to the Final Filter	<140	<140	<140	<140	<140	<140	<140	<140
Number of particles for EUV mask production (#/L) [26.3], POE	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Particle Precursors, #/L [56]	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
100% IPA: High molecular weight organics (ppb)	300	300	250	200	300	250	200	200
100% IPA: % Assay Minimum [51] POP [Cleaning Chemistry]	99.91	99.91	99.94	99.94	99.91	99.94	99.94	99.94
100% IPA: Particle counts (50nm, #/ml) [52] POP [Cleaning Chemistry] PROACTIVE: Non-EAP Particle Control: 50nm (#/L)	<30	<30	<30	<30	<30	<30	<30	<30
100% IPA: Number of EAP at critical particle size (#/L) [26], POP	10000	10000	10000	10000	10000	10000	10000	10000
100% IPA: PROACTIVE: EAP Particle Control: 50nm (#/L) [26], POD	<30	<30	<30	<30	<30	<30	<30	<30
100% IPA: Number of non-EAP at critical size (#/L) [26], POP	10000	10000	10000	10000	10000	10000	10000	10000
100% IPA: PROACTIVE: Non-EAP Particle Control: 50nm (#/L), POD	<140	<140	<140	<140	<140	<140	<140	<140
30% H2O2: Particle counts (200nm, #/ml) [52] POP [Functional Chemistry]	250	250	200	150	250	200	150	150
37% HCI: Particle counts (200nm, #/ml) [52] POP [Functional Chemistry]	250	250	200	150	250	200	150	150

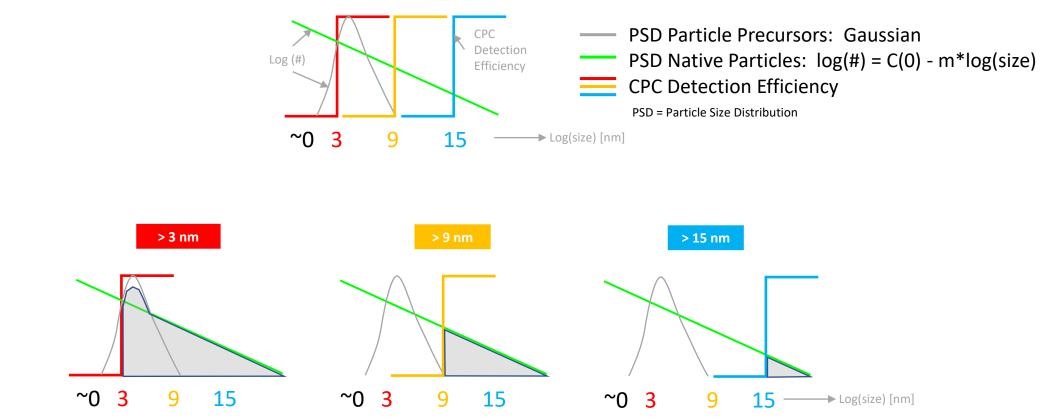
The Yield Enhancement Roadmap calls for improved liquid particle metrology in the coming years

Native Particles and Particle Precursors -Liquid Quality Detractors


- Native particle a particle that exists in a fluid at or close to its final size and shape if removed from the fluid.
 - Examples colloidal silica, stainless steel.
- **Particle precursor** dissolved or molecular material in a fluid smaller than a "critical size" that may form a particle of "critical size" when a droplet dries or may precipitate under changing conditions.
 - Examples high-molecular weight organics, silicic acid.

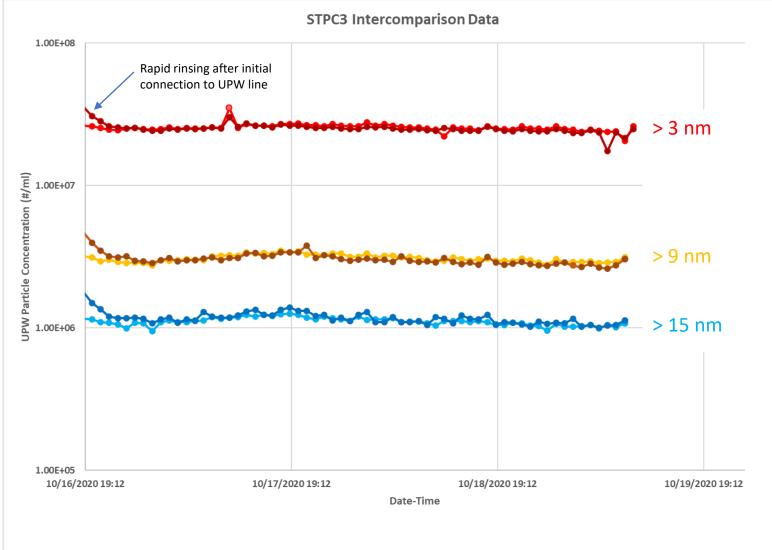
• Native Particles (Silica, Alumina, SS)

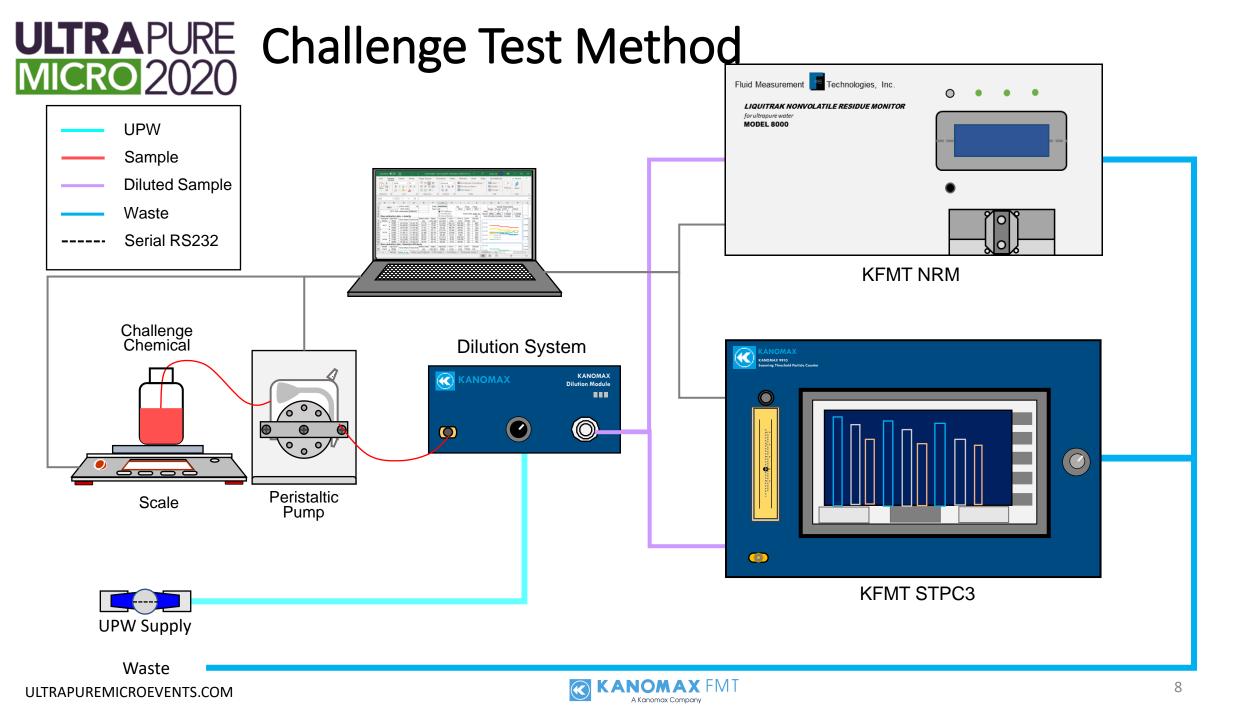
- Organics Precursor
- Precipitated Precursor (silicic acid)
- Dissolved Precursor (NaCl, KCl)
- Many types of contaminants affect liquid Quality.
- A comprehensive Liquid Quality Monitor should respond to as many contaminants as possible.

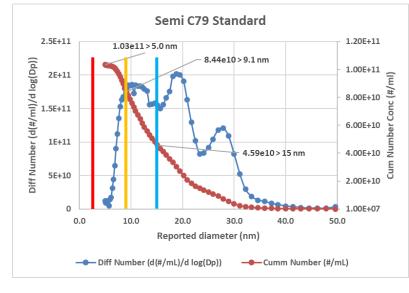

UPW Quality Measurement down to 3 nm - Illustration

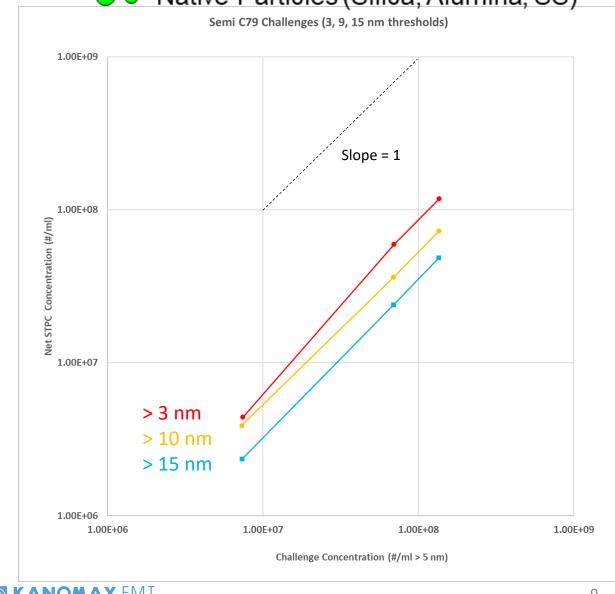
Engineered aerosolization followed by size selective condensation growth and counting responds to many important UPW contaminants

ULTRAPURE UPW Quality Measurement down to 3 nm illustration

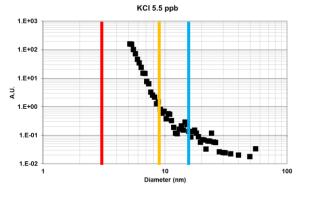

Size selective condensation growth down to 3 nm enables both Particle Precursor and Native Particle distributions to be measured.


ULTRAPURE Stable 24/7 UPW Measurement

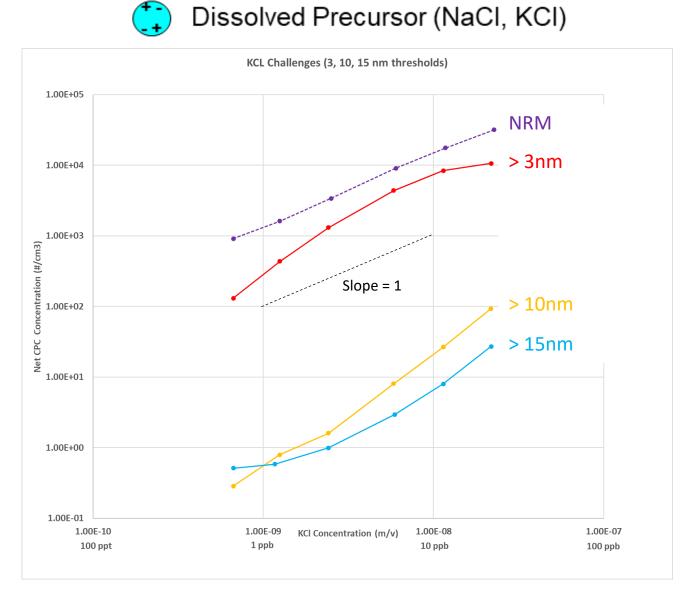

- STPC3 is a 24/7 online liquid quality monitor.
- 2x STPC3 on the same UPW at KFMT is shown
- After calibration, excellent unit-to-unit matching is observed on all 3 size channels.


A Kanomax Compan

ULTRAPURE Silica Native Particle Response Native Particles (Silica, Alumina, SS)



- The new C79 silica (native) particle challenge standard extends to 5 nm and below.
- The STPC3 linearly responds to the standard on all channels, in the proper ratios, as expected.

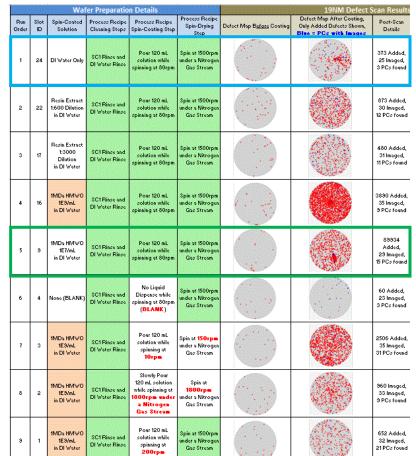


A Kanomax Company

ULTRAPURE KCI Dissolved Precursor Response

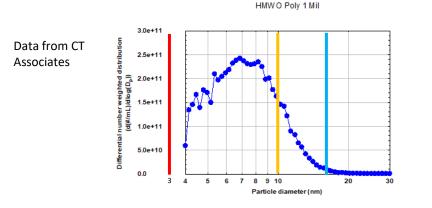
- Dissolved salts in UPW are a wellunderstood yield and reliability concern
 - Gaussian distribution with a peak << 10 nm
- 3 nm channel shows response curve similar to a commercial non-volatile residue monitor (NRM).
 - 3 nm channel of STPC3 performs provides equivalent information to the NRM.
- 10 and 15 nm channels show little response until about 10 ppb, as expected.

High Molecular Weight Organic (HMWO) Deposition on Wafers • Organics Precursor

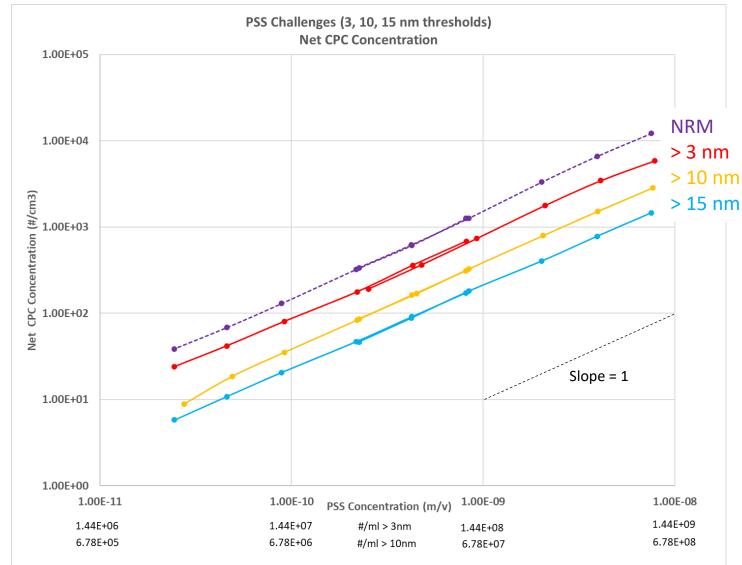

ANOMAX FM1

A Kanomax Company

- HMWO in UPW can arise from many sources
 - IX Resin, Filters, plumbing, components
- HMWO in UPW deposits on wafers.
 - 19 nm scan with KLA SP5
 - Even unspiked UPW (row 1) shows defectivity
 - Particle precursors are present in UPW.
 - ~1e7/ml HMWO (row 5) produces many adders.


Procedure:

- UPW was collected in the Fab from the chamber nozzle of a spin cleaning tool.
- The 1MDa HMWO (filtered, 3.6E11/mL) and the Resin Extract samples were each diluted with the UPW to two different concentrations, as indicated in the table below.
- Next, bare Si NPWs were processed on a spin-cleaning tool using a recipe that ran as follows:
 1) 30s SC-1 rinse, 2) 40s UPW rinse, 3) 120 mL of "Spin-Coated Solution" was poured onto the wafer while it spun at 20rpm,
 4) lastly the wafer was spun to dryness at 1500rpm for 22s under a stream of nitrogen gas.



Data courtesy of Nabil Mistkawi and Michael Rasch, Samsung Austin Semiconductor, 2020

HMWO Precursor Response • Organics Precursor

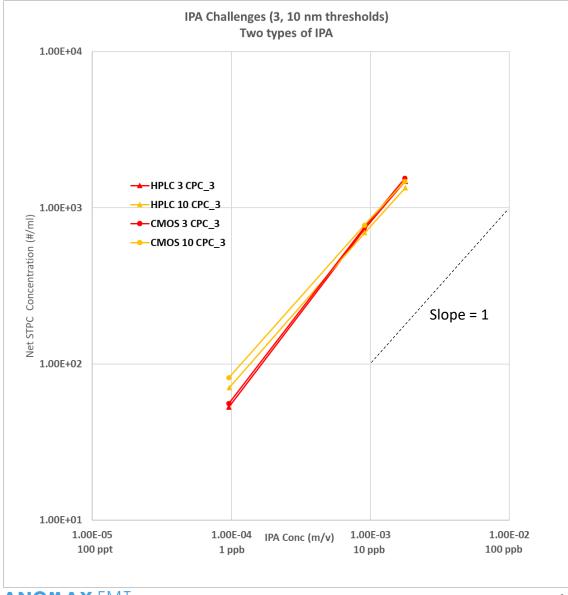
- STPC3 and NRM responds to HMWO 1:1 on all channels.
- 3 nm channel has similar sensitivity to NRM.
- HMWO concentrations below 1e7/ml (measurable defects on wafer) are detected by STPC3.

ULTRAPURE

MICRO 202

ULTRAPURE MICRO 2020 – IPA example

Some common and important solvents, such as IPA, can be measured with the STPC3.



Isopropyl Alcohol (IPA) Response

A Kanomax Compan

- Linear response to the IPA challenge.
- 3 nm and 10 nm channels have very similar response
 - Most particles are larger than 10 nm.
- CMOS grade has higher counts than HPLC grade
- STPC3 can be used to measure and monitor IPA down to 3 nm.

Conclusions and Future Work

- The STPC3 is a Liquid Quality Monitor for both Native Particles and Particle Precursors in UPW and other Liquids.
 - Operates below the detection limit of OPCs 3, 9, 15 nm channels
- STPC3 responds to many important liquid contaminants
 - Relative responses of each channel varies depending on the challenge.
 - UPW
 - Silica response (Native Particles)
 - HMWO response (Particle Precursors)
 - KCl response (Particle Precursors)
 - IPA
 - Linear response to IPA challenge observed
- In the future, we will expand the STPC3 allowed chemicals to include dilute Peroxide, Ammonia, and HCl.

Thank You CT Associates, Samsung Austin Semiconductor

Derek Oberreit, Kanomax FMT, Inc.

Derek.Oberreit@KanomaxFMT.com

KanomaxFMT.com

